
Series Sequences and Summation

Sequences

A sequence is a set of numbers in which each one is related in a definite way to the number that
precedes it.

Arithmetic Sequence

An arithmetic sequence is a number series in which each term may be obtained from the
preceding one by adding a constant called the common difference. If an arithmetic sequence has
first term 1a and common difference d, then na the nth term of the sequence, is given by:
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Example:

Find the 25th term of the arithmetic sequence 4 + 7 + 10 + 13 + …
Since 1 4a  , d = 3, and n = 25, 4 (25 1)3 76na    

The sum nS of the first n terms of an arithmetic sequence is given by:
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Or equivalently,
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Example:

Find the sum of the first 6 terms of 4 + 7 + 10 + …
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Geometric Sequence

A geometric sequence is a number series in which each term may be obtained from the preceding
one by multiplying by a fixed number called the ratio. If a geometric sequence has a first term

1a and a common ratio r, then the nth term of a geometric sequence is given by:
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Example:

Find the 8th term of the geometric sequence. Since the first term is 1 3a  , the ratio

is 2r  and n – 1 = 8 – 1 = 7.
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If a geometric sequence has a first term 1a and a common ratio r, then the sum nS of the first n

terms is given by:
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Example:

Find the sum of the first 5 terms of 2, 16, 18, …

Since a = 2, n = 5, and r = 3,
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The common ratio is determined as follows:
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Summation

Summation is the act or process of forming a sum.

Sigma Notation

The Greek letter sigma ( ) is used for summation notation. The sum of n terms 1 2 3, , ,... na a a a is

written as
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Where i is the index of summation, ia is the ith term of the sum, and the upper and lower bounds

of summation are n and 1.

For example, the first four terms of the sequence 3, 5, 7, 9,…, 2k+1 can be written as follows:
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This is read “the sum as k goes from 1 to 4 of 2k+1.

Summation Rules
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Series

An indefinite number of terms succeeding one another, each of which is derived from one or
more of the preceding by a fixed law, called the law of the series; as, an arithmetical series; a
geometrical series. If the sequence of partial sums converges to a definite value, the series is said
to converge. If the sequence of partial sums does not converge to a limit (e.g., it oscillates or
approaches ), the series is said to diverge.

Convergent Series

A convergent series is a series whose sequence of partial sums approaches a limit. The series
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is 2.

Divergent Series

A divergent series is a series whose sequence of partial sums does not approach a limit. The

series
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 does not converge since its sequence of partial sums gets larger without limit.


