
Linear Algebra Study Guide

Systems of Linear Equations

A system of linear equations in n variables is a set of m equations, each of which is
linear in the same n variables. The double subscript notation indicates ija is the coefficient

of jx in the ith equation.
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    

Systems of two Equations in two Variables

If there is one solution the equations are a consistent system and the lines of the graphs
will intersect (intersecting lines, one solution). If all the values of one equation satisfy the
other equation, then the two consistent equations are called dependent equations and the
lines of their graphs will coincide (coincident lines, infinite solutions). To coincide is to
correspond exactly or occupy the same place in space. If there is no set of values that will
satisfy both equations they are called inconsistent equations and the lines of the graph s
will be parallel (parallel lines, no solutions).

Consistency of systems of equations is the property possessed by a system of
equations when there is at least one set of values of the variables that satisfies each
equation, for example the solution sets have one or more common points. If they are not
satisfied by any one set of values of the variables they are inconsistent.

There are three methods for solving systems of two equations in two variables. You
can solve by graphing to determine whether the lines of the graph intersect, are
coincident, or are parallel. You can also add or subtract the equations to solve for one
variable which can then be substituted back into the original equation to solve for the
other variable. For solving larger systems Gauss Jordan elimination is used.

Operations that lead to equivalent systems of equations:

1. Interchange two equations
2. Multiply an equation by a nonzero constant
3. Add a multiple of an equation to another equation

Using the three basic operations of Gaussian elimination, work from the upper left
corner of the system saving the x variable in the upper left position (making the x variable



equal to one) and eliminating the other x variables (making the other x variables equal to
zero) from the first column.

Properties of a Matrix in Row-echelon Form

1. All rows consisting entirely of zeros occur at the bottom of the matrix.
2. For each row that does not consist entirely of zeros, the first nonzero entry is one,

called a leading one.
3. For two successive nonzero rows, the leading one in the higher row is farther to

the left than the leading one in the lower row.

A system of equations is homogeneous when each of the constant terms is zero. A
homogeneous equation in n variables has the form 11 1 12 2 13 3 1... 0n na x a x a x a x     .

Every homogeneous system of linear equations is consistent and must have at least one
solution. If the system has fewer equations than variables, it must have an infinite number
of solutions. Solutions in which at least one of the variables has a value different from
zero are nontrivial solutions. If all the variables in a homogeneous system have the value
zero they are referred to as trivial solutions of a set of homogeneous linear equations.

Matrices

A matrix is a rectangular array of numbers written using brackets. Matrices are
written in row and column format ( r c , or m n ). The individual elements of a
matrix are labeled using aij notation, where i is called the row index and j the column
index. Element aij is in the ith row and the jth column of the matrix.
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Add example matrix showing ija with numeric subscripts (e.g. 11a )

Matrix Operations

Addition and Subtraction of Matrices

Given two m x n matrices A ija     and B ijb     , their sum is A B ij ija b      and

their difference is A B ij ija b      . To add and subtract matrices they must be the same



order or size. To calculate the sum, add the elements in the corresponding positions of the
matrix. To calculate the difference, subtract the elements in the corresponding positions
of the matrix. Addition of matrices is both commutative and associative.

Matrix Multiplication

For an m n matrix A ija     and an n p matrix B ijb     , the product AB= ijc 
   is an

m p matrix, where 1 1 2 2 3 3 ...ij i j i j i j in njc a b a b a b a b         The entry ijc in AB is

obtained by multiplying the entries in row i of A by the corresponding entries in column j
of B and adding the results. In other words, multiply the rows times the columns and add.
To multiply matrices, the number of columns in the first matrix must be equal to the
number of rows in the second matrix.

Scalar Multiplication

The scalar product of a number k and a matrix A is the matrix denoted kA, obtained
by multiplying each entry of A by the number k. The number k is called a scalar. A
scalar as contrasted with a vector, which represents both magnitude and direction, is a
number that measures magnitude, positive or negative, but not direction.

Example: Find the scalar product of 3A where
3 0

A
4 5

 
 
  

.

3 0 3( 3) 3(0) 9 0
3A 3

4 5 3(4) 3(5) 12 15

       
       
          

Inverse Matrices

For an m n matrix A, if there is a matrix A-1 for which 1 1A A I A A     then A-1

is the inverse of A. To find the inverse matrix, form an augmented matrix consisting of an
identity matrix of the same order and perform row equivalent operations as in the Gauss-
Jordan elimination method. If the resulting matrix has an inverse it is called an inverted
or nonsingular matrix. If a row consisting entirely of zeroes occurs in either of the two
matrices in the augmented matrix the matrix has no inverse and is called a singular
matrix. Not all matrices have an inverse. An identity matrix is a square matrix with n
rows and n columns that contains zeroes for each of its elements except those along the
diagonal that begins with the element in the first row and the first column. The symbol I
is used to represent an identity matrix when its dimensions are not necessary and when
the dimensions can be determined from the context. The symbol nI represents the

identity matrix of dimension n by n. For example:



1 0

0 1

 
 
  

2 x 2 identity matrix 2I

1 0 0

0 1 0

0 0 1

 
 
 
 
 
 

3 x 3 identity matrix 3I

LU Factorization

LU factorization also known as LU decomposition is defined as follows:

If a n n matrix A can be written as the product of a lower triangular matrix L and
upper triangular matrix U, then A LU is an LU factorization of A.

Given a random square matrix, A, the only way we can guarantee that A will have an
LU decomposition is if we can reduce it to row-echelon form without interchanging any
rows. If we do have to interchange rows then there is a good chance that the matrix will
not have an LU Decomposition. There is no single unique LU-Decomposition for A.

Stochastic Matrices

Stochastic means regarding conjecture. Conjecture is an opinion, or judgment, formed on
defective or presumptive evidence; to infer on slight evidence.

Matrix Solutions of Systems of Equations

For a system of n linear equations in n variables, AX = B, if A is an invertible matrix,
then the unique solution of the system is given by X = A-1B.

AX = B
A-1(AX) = A-1B Multiply by A-1 on the left on both sides
(A-1A)X = A-1B Associative property of matrices
IX = A-1B A-1A = I
X = A-1B IX = X

Example: Solve the following system of equations using an inverse matrix:

2 3 4

3 4 5

x y

x y

  

  

2 3 4

3 4 5

x

y

     
      
          

A · X = B

4 3 4 1

3 2 5 2

x

y

       
         
              



A-1 · B = X

The solution to the system of equations is (1, 2).

Determinants

History: Determinants were originally considered without reference to matrices. A
determinant was defined as a property of a system of linear equations. The determinant
"determines" whether the system has a unique solution (which occurs precisely if the
determinant is non-zero). In this sense, determinants were first used in the 3rd century BC
Chinese mathematics textbook The Nine Chapters on the Mathematical Art.

In Europe, 2×2 determinants were considered by Cardano (1501 - 1576) at the end of
the 16th century and larger ones by Leibniz (1646 - 1716). Vandermonde (1735 - 1796)
was the first to recognize determinants as independent functions. Laplace (1749 - 1827)
gave the general method of expanding a determinant in terms of its complementary
minors. Following the work of Laplace, Lagrange (1736 - 1813) developed determinants
of the second and third order. Cauchy (1789 – 1857) was the first to use the word
determinant in its present sense. He also summarized and simplified what was then
known on the subject, improved the notation, and provided a proof of the multiplication
theorem.

Definition: A determinant is a square array of quantities, called elements,
symbolizing the sum of certain products of these elements. The number of rows or
columns is the order of the determinant. The determinant of a square matrix is a scalar
calculated by multiplying, adding, and subtracting various elements of the matrix.

If a determinant has two rows and two columns, it is called a determinant of the
second order. The value of this determinant is the difference of the products of its
diagonals:

a b

c d

The value of this determinant is the difference of the products of its diagonals: ad bc

A third order determinant is an array of numbers that has three rows and three
columns. To find the determinant of a system with an order (size) greater than three, you
need to use minors and cofactors.

There are two ways to determine the determinant of a 3 x 3 matrix. The first method is
the diagonal method and the second is cofactor expansion.

To apply the diagonal method, copy the first and second columns of A to form fourth
and fifth columns. The determinant is obtained by adding and subtracting the products of
the six diagonals.

0 2 1

A 3 1 2

4 4 1

 
 
  
 
  

0 2 1 0 2

3 1 2 3 1

4 4 1 4 4

 

 



0 2 1 0 2

3 1 2 3 1

4 4 1 4 4

 

 

By adding the lower three products and subtracting the upper three products you can
find the determinant.

0 16 ( 12) ( 4) 0 6 2A         

Minor is defined as something that is less or smaller. The minor of an element in a
determinant is the determinant formed by striking out the row and column in which the

element occurs. For a square matrix A ija     , the minor Mij of an element ija is the

determinant of the matrix formed by deleting the ith row and jth column of A. The real
number Mij is the determinant of a sub-matrix of dimension 1n by 1n which contains

everything except row i and column j of the original matrix. The number Mij is called the

minor for element ij of the matrix. For example: given the following matrix find the
following minors; 31M , 32M , 33M .

8 0 6

A 4 6 7

1 3 5
ija

 
 

         
   

0 6

6 7

 
 
 
 
 
 

4

5

-8

-1 -3
31

0 6
M

6 7

 
 
  

0 7 ( 6)6 0 ( 36) 36       

-8 6

4 7

 
 
 
 
 
 

0

5

-6

-1 -3
32

8 6
M

4 7

 
 
  

8 7 4 6 56 24 80      

-8 0

4 6

 
 
 
 
 
 

6

7

5-1 -3
33

8 6
M

4 6

 
 
  

8 ( 6) 4 0 48 0 48       

The cofactor of an element in the ith row and jth column of a determinant is the value
of the minor of that element if i + j is even, or the negative of the value of the minor of



the element if i + j is odd. For a square matrix A ija     , the cofactor ija of an element

ija is given by ( 1)i j
ij ijA M  , where ijM is the minor of ija .

Example 2: Find the cofactors of the minors from example 1 where 31M 36 ,

32M 80 , and 33M 48 .

A ( 1) Mi j
ij ij

 
3 1

31

4

A ( 1) 36

( 1) 36

1 36

36

 

 

 



3 2
32

5

A ( 1) ( 80)

( 1) ( 80)

( 1)( 80)

80

  

  

  



3 3
33

6

A ( 1) 48

( 1) 48

1 48

48

 

 

 



A ( 1)(36) ( 3)(80) 5(48)

36 240 240

36

    

  



The determinant of a matrix, denoted A can be determined by choosing any row or

column, multiplying each element in that row or column by its cofactor and adding.

Shortcuts and Special Cases

 The determinant of a triangular matrix (one in which either all the entries above
the main diagonal are zero or all the entries below it are) is the product of the
entries on the diagonal.

 The determinant of a matrix is the same as the determinant of its transpose

det(A) det(A )T

 If a matrix has a row or column of zeros, or if one row or column is a multiple of
another, then its determinant is zero.

The Adjoint of a Matrix

The adjoint of a matrix is the transpose of the matrix obtained by replacing each
element by its cofactor; the matrix obtained by replacing each element ija by the cofactor

of the element jia . The transpose of a matrix is formed by writing its column as rows. If

A m n  then AT n m  . The Hermitian conjugate matrix is frequently called the
adjoint matrix by writers on quantum mechanics.

If A is an n m invertible matrix, then



1 1
A adj(A)

det(A)
 

Cramer’s Rule

Cramer’s rule, named after Gabriel Cramer (1704 -1752), provides a method for
solving systems of linear equations in two or more unknowns by expressing the unknown
variables as the ratio of two determinants. The formal definition is as follows:

For a system of n linear equations in n unknowns, let A be the coefficient matrix of the
system. If det A 0 , then the solution of the system is given as

1 2
1 2

det Adet A det A
, , ...,

det A det A det A
n

nx x x  

Where the ith column of Ai is the column of constants in the system of equations.

Cramer’s rule can be extended to a system of n linear equations in n variables. The
value of each variable is the quotient of two determinants. The denominator is the
determinant of the coefficient matrix, and the numerator is the determinant formed by
replacing the column corresponding to the variable being solved for with the column
representing the constants. Cramer’s rule is derived as follows:

11 1 12 2 1

21 1 22 2 2

a x a x b

a x a x b

 

 

Multiplying the first equation by 21a and the second equation by 11a and adding the

results produces the following:

 

21 11 1 21 12 2 21 1

11 21 1 11 22 2 11 2

11 22 21 12 2 11 2 21 1

a a x a a x a b

a a x a a x a b

a a a a x a b a b

  

 

  

In order to add or subtract the constants the subscripts must be the same but do not
have to be in the same order. In this example, when you add 21 11 1a a x and 11 21 1a a x the

result is zero.

 11 22 21 12 2 11 2 21 1

11 22 21 12 11 22 21 12

a a a a x a b a b

a a a a a a a a

 


 
divide both sides by  11 22 21 12a a a a

11 2 21 1
2

11 22 21 12

a b a b
x

a a a a








22 1 12 2
1

11 22 21 12

a b a b
x

a a a a






Since the numerators and denominators of both 1x and 2x can be represented as

determinants (e.g. 11 22 21 12a a a a ), you have the following:

1 12

2 22
1

11 12

21 22

b a

b a
x

a a

a a

 ,

11 1

21 2
2

11 12

21 22

a b

a b
x

a a

a a

 11 22 21 12 0a a a a 

The denominator for both 1x and 2x is the determinant of the coefficient matrix A.

The determinant forming the numerator of 1x can be obtained from A by replacing its

first column by the column representing the constants of the system. The determinant
forming the numerator of 2x can be obtained by replacing its second column by the

column representing the constants of the system. The two determinants are denoted 1A

and 2A .

12

1

22

A
a

a
 1

2

b

b
11

2

21

A
a

a
 1

2

b

b

Which results in 1
1

A

A
x  and 2

2

A

A
x  .

The syntax for systems of equations and determinants can vary from one textbook to
another, but the operations are the same. The syntax used most often for linear equations
is as follows:

1 1 1 1

2 2 2 2

3 3 3 3

a x b y c z d

a x b y c z d

a x b y c z d

  

  

  

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

a x a x a x b

a x a x a x b

a x a x a x b

  

  

  

Cramer’s rule using both types of syntax is given below. The solution of the systems

of equations where A 0 :

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

a x a x a x b

a x a x a x b

a x a x a x b

  

  

  



12 13

22 23

1 32 33
1

11 12 13

21 22 23

31 32 33

A

A

a a

a a

a a
x

a a a

a a a

a a a

 

1

2

3

b

b

b

11 13

21 23

2 31 33
2

11 12 13

21 22 23

31 32 33

A

A

a a

a a

a a
x

a a a

a a a

a a a

 

1

2

3

b

b

b

11 12

21 22

3 31 32
3

11 12 13

21 22 23

31 32 33

A

A

a a

a a

a a
x

a a a

a a a

a a a

 

1

2

3

b

b

b

The solution of the systems of equations where D 0 :

1 1 1 1

2 2 2 2

3 3 3 3

a x b y c z d

a x b y c z d

a x b y c z d

  

  

  

is given by

DD D
, , ,

D D D

yx zx y z  

where

1 1 1

2 2 2

3 3 3

D=

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

D =x

d b c

d b c

d b c

1 1 1

2 2 2

3 3 3

D =y

a d c

a d c

a d c

1 1 1

2 2 2

3 3 3

D =z

a b d

a b d

a b d

Example 1: Solve the following system using Cramer’s rule.



3 7 13

1

2 3 4

x y z

x y z

x y z

  

  

  

1 3 7

D= 1 1 1 10

1 2 3







3 7

D = 1 1 20

2 3
x







13

1

4

1 7

D = 1 1 6

1 3
y 

13

1

4

1 3

D = 1 1 24

1 2
z







13

1

4

D 20
2

D 10
xx   


D 6 3

D 10 5

yy


  


D 24 12

D 10 5
zz


  



Triangular Matrix

For an upper triangular matrix the matrix must be square and all the entries below the
main diagonal are zero and the main diagonal entries and the entries above it may or may
not be zero. A lower triangular matrix is just the opposite. The matrix is still a square
matrix and all the entries of a lower triangular matrix above the main diagonal are zero
and the main diagonal entries and those below it may or may not be zero.

If A is a triangular matrix of order n, then its determinant is the product of the entries
on the main diagonal:

11 22 33det(A) A ... nna a a a 

Rules for finding determinants using triangular matrices:

Let A be a square matrix:

1. If B is the matrix that results from multiplying a row or column of A by a scalar c,
then det( ) det( )B c A .

2. If B is the matrix that results from interchanging two rows or two columns of A,
then det( ) det( )B A . If you interchange two rows or columns you have to

place a minus sign in front of the determinant.



3. If B is the matrix that results from adding a multiple of one row of A onto another
row of A, or adding a multiple of one column of A onto another column of A, then
det( ) det( )B A .

4. When you multiply a row by a fraction it changes the value of the determinant so
you have to multiply the resulting matrix by the reciprocal of the scalar that was
used in the row operation.

Example:

2 10 2

1 0 7

0 3 5

A

 
 
 
 
  

1 2

1 0 7

2 10 2

0 3 5

R R  



2 1

1 0 7

0 10 16 2

0 3 5

R R 



2

1 0 7

8 1
(10) 0 1

5 10

0 3 5

R



3 2

1 0 7

8
(10) 0 1 3

5

49
0 0

5

R R 

49
det( ) 10(1)(1) 98

5
A

    

Parametric Equations

Parametric equations are equations in which coordinates are each expressed in terms
of quantities called parameters. A parametrically defined curve uses individual equations
to represent the coordinates of each point. In 2-space the x and y coordinates of each
point are defined in terms of a third variable t called the parameter. You then substitute a



value for t into both parametric equations to identify the coordinates of one point on the
graph of the parametric curve. For example, the linear equation 2 7y x  can be

represented by the parametric equations 3x t  and 2 1y t  . To eliminate the

parameter and express the parametric curve in rectangular form you eliminate the
parameter leaving behind only the variables x and y. To do this you solve one of the
parametric equations for t and substitute it into the other parametric equation.

Example: Eliminate the parameter from the equations 3x t  and 2 1y t  , and

express the equation in rectangular form.

3x t 
3 3 3x t    subtract 3 from both sides of the equation

3t x 

2 1y t 

2( 3) 1y x   replace the parameter t with its equivalent

2 6 1y x  

2 7y x 

In selecting the variable for linear algebra problems it is recommended that choose the
variables that occur last in a given equation to be the free variables. For example,

1 24 2x x 

In this form, the variable 2x is free, which means it can take on any real value. The

variable 1x is not free because its value depends on the value assigned to 2x . To

represent the infinite number of solutions of this equation, it is convenient to introduce
a third variable called the parameter. By letting 2x t you can represent the solution

set as 1 24 2 ,x t x t  

Eigenvalues and Eigenvectors

Eigen is a German word which means proper or characteristic. Eigenvectors are a
special set of vectors associated with a linear system of equations (i.e., a matrix equation)
that are sometimes also known as characteristic vectors, proper vectors, or latent vectors.

The determination of the eigenvectors and eigenvalues of a system is extremely
important in physics and engineering, where it is equivalent to matrix diagonalization and
arises in such common applications as stability analysis, the physics of rotating bodies,
and small oscillations of vibrating systems, to name only a few. Each eigenvector is
paired with a corresponding so-called eigenvalue. Mathematically, two different kinds of
eigenvectors need to be distinguished: left eigenvectors and right eigenvectors. However,
for many problems in physics and engineering, it is sufficient to consider only right
eigenvectors. The term "eigenvector" used without qualification in such applications can
therefore be understood to refer to a right eigenvector. An eigenvalue of a square matrix



is a scalar that is usually represented by the Greek letter  (pronounced Lambda). An
eigenvector is a vector. Moreover, we require that an eigenvector be a non-zero vector, in
other words, an eigenvector can not be the zero vector. We will denote an eigenvector by
the small letter x. All eigenvalues and eigenvectors satisfy the equation A x x for a
given square matrix, A. Eigenvalues are values of  for which A x x . Eigenvectors are
solutions of x corresponding to particular values of  . An eigenvector cannot be zero. A
matrix can have more than one eigenvalue.

Let A be an n n matrix. Then,

1. An eigenvalue of A is a scalar  such that det( ) 0I A  

2. The eigenvalues of A corresponding to  are the nonzero solutions of
( )I A  x 0

The equation det( ) 0I A   is called the characteristic equation of A. When expanded

to polynomial form the polynomial 1
1 1 0( ) ...n n

nI A c c c   
      is called the

characteristic polynomial. From this definition it follows that the eigenvalues of an n n
matrix A correspond to the roots of the characteristic polynomial of A.

Algorithm: Let A be an n n matrix, then:

1. Form the characteristic equation ( ) 0I A  

2. Find the roots of the characteristic equation. These are the eigenvalues of A
3. For each eigenvalue i , find the eigenvectors corresponding to i by solving the

homogeneous system ( )i I A  x 0 . Use reduced row echelon form on the n n

matrix. The resulting matrix must have at least one row of zeros (the system must
have nontrivial solutions).

Example: Find the eigenvalues and eigenvectors corresponding to the following matrix:

2 12

1 5
A

 
 
  

First, solve the characteristic equation to find the eigenvalues.

I A

1 0 0 2 12
( )

0 1 0 1 5
I A


 



     
        
          

2 12

1 5





  
 
  

result of I – A

     2 5 1 12      find the determinant



2

2

5 2 10 12

3 2

( 1)( 2)

  

 

 

    

  

  

factor and solve for 

1

1

1

1 0

1 1 0 1

1







 

   



2

2

2

2 0

2 2 0 2

2







 

   



Place eigenvalues back into the characteristic formula to form a new matrix. Next, use
Gauss-Jordon elimination to reduce the matrix to row echelon form with at least one row
of zeroes.

For eigenvalue 1 1  :

1 0 2 12 3 12
( 1)

0 1 1 5 1 4
I A

       
         
            

3 12

1 4

 
 
  

2 1R R
1 4

3 12

 
 
  

1 4

3 12

 
 
  

3 1 2R R 
1 4

0 0

 
 
  

-1
1 4

0 0

 
 
  

multiply by -1 to get a positive coefficient in the first row

1 4

0 0

 
 
  

This gives the following equation:

1 24 0x x  where 2x t and 1 4 0x t 

This gives the eigenvector for 1 as follows:

1

2

4 4
, 0

1

x t
t t

x t

     
       
         

x

For eigenvalue 2 2  :



2 0 2 12 4 12
( 2)

0 2 1 5 1 3
I A

       
         
            

4 12

1 3

 
 
  

2 1R R
1 3

4 12

 
 
  

1 3

4 12

 
 
  

4 1 2R R 
1 3

0 0

 
 
  

-1
1 3

0 0

 
 
  

multiply by -1 to get a positive coefficient in the first row

1 3

0 0

 
 
  

This gives the following equation:

1 23 0x x  where 2x t and 1 3 0x t 

This gives the eigenvector for 2 as follows:

1

2

3 3
, 0

1

x t
t t

x t

     
       
         

x

For a linear transformation T on a vector space V, an eigenvalue is a scalar  for
which there is a nonzero member v of V for whichT v v . The vector v is an
eigenvector (or characteristic vector). For a matrix A, the eigenvalues are the roots
(characteristic roots) of the characteristic equation of the matrix. The number  being an

eigenvalue means there is a nonzero vector 1 2( , ,... )nx x xx for which A x x , where

multiplication is matrix multiplication and x is considered to be a one column matrix. If A
is an n n triangular matrix, then its eigenvalues are the entries on its main diagonal.

Eigenspace is the set of all eigenvectors of a given eigenvalue  together with the

zero vector and is a subspace of nR If A is an n n matrix with an eigenvalue  , the the
set of all eigenvectors of  , together with the zero vector

   : is an eigenvalue of  0 x x is a subspace of nR . This subspace is called the

eigenspace of  . Wolfram definition: If A is an n n square matrix and  is an
eigenvalue of A, then the union of the zero vector 0 and the set of all eigenvectors

corresponding to eigenvalues  is a subspace of nR known as the eigenspace of  .



Diagonalization

A diagonal matrix is a square matrix all of whose nonzero elements are in the
principal diagonal. If, in addition, all the diagonal elements are equal, the matrix is a
scalar matrix. An identity (or unit) matrix is a diagonal matrix whose elements in the
principal diagonal are all unity.

Matrix diagonalization is the process of taking a square matrix and converting it into
a special type of matrix--a so-called diagonal matrix--that shares the same fundamental
properties of the underlying matrix. Matrix diagonalization is equivalent to transforming
the underlying system of equations into a special set of coordinate axes in which the
matrix takes this canonical form. Diagonalizing a matrix is also equivalent to finding the
matrix's eigenvalues, which turn out to be precisely the entries of the diagonalized matrix.
Similarly, the eigenvectors make up the new set of axes corresponding to the diagonal
matrix.

The remarkable relationship between a diagonalized matrix, eigenvalues, and
eigenvectors follows from the beautiful mathematical identity (the eigen decomposition)
that a square matrix A can be decomposed into the very special form

Suppose that A is a square matrix and further suppose that there exists an invertible

matrix P (of the same size as A) such that 1P AP is a diagonal matrix. In such a case we
call A diagonalizable and say that P diagonalizes A. An n n matrix A is diagonalizable
if A is similar to a diagonal matrix. That is, A is diagonalizable if there exists and

invertible matrix P such that 1P AP . Two square matrices A and B are called similar if

there exists and invertible matrix P such that 1B P AP . An n n matrix A is
diagonalizable if and only if it has n linearly independent eigenvectors.

Algorithm: To find P, provided it exists of course. First find the eigenvalues for the
matrix A and then for each eigenvalue find a basis for the eigenspace corresponding to
that eigenvalue. The set of basis vectors will then serve as a set of linearly independent
eigenvectors for the eigenvalue. If for all the eigenvalues we have a set of n eigenvectors
then A is diagonalizable and we use the eigenvectors to form P. If we don’t have a set of
n eigenvectors then A is not diagonalizable. The steps are as follows:

Let a be an n n matrix:

1. Find n linearly independent eigenvectors 1 2, ,... np p p for A with corresponding

eigenvalues 1 2, ,..., n   . If n linearly independent eigenvectors do not exist, then

A is not diagonalizable.
2. If A has n linearly independent eigenvectors, let P be the n n matrix whose

columns consist of these eigenvectors. That is

 1 2 ... nP  p p p  

3. The diagonal matrix 1D P AP will have eigenvalues 1 2, ,..., n   on its main

diagonal and zeros elsewhere. The order of the eigenvectors used to form P will
determine the order in which the eigenvalues appear on the main diagonal D.



Example: Show that the matrix A is diagonalizable. Then find a matrix P such that
1P AP is diagonal.

1 1 1

1 3 1

3 1 1

A

  
 
   
 
    

The characteristic polynomial of A is as follows:

   

1 1

1 1 2 2 3

3 1

1

3

1

I A



    



  

        

 

This gives the eigenvalues of 1 2  , 2 2  , and 3 3  . From these eigenvalues

obtain the reduced row echelon forms and corresponding eigenvectors.

1

1 1 1 1 0 1 1

2 1 1 1 0 1 0 0

3 1 3 0 0 0 1

I A

     
     
             
     
           

x

2

1
1 0

43 1 1 1
1

2 1 5 1 0 1 1
4

3 1 1 4
0 0 0

I A

 
 
                                      
 
 

x

3

2 1 1 1 0 1 1

3 1 0 1 0 1 1 1

3 1 4 0 0 0 1

I A

     
     
             
     
           

x

Form the matrix P from the eigenvectors above.

1 1 1

0 1 1

1 4 1

P

   
 
   
 
   

The matrix is nonsingular, which implies that the eigenvectors are linearly independent
and A is diagonalizable. P inverse is



1

1 1 0

1 1
0

5 5

1 1
1

5 5

P

 
    
 
    
 
 
   
 

So it follows that:

1

2 0 0

0 2 0

0 0 3

P AP

 
 
  
 
  

Symmetric Matrices

A square matrix A is symmetric if it is equal to its transpose TA A . If A is an n n
symmetric matrix, then the following properties are true:

1. A is diagonalizable
2. All eigenvalues of A are real
3. If  is an eigenvalue of A with multiplicity k, the  has k linearly independent

eigenvectors. That is, the eigenspace of  has dimension k.

If the above properties are true, this is called the Real Spectral Theorem, and the set of
eigenvalues of A is called the spectrum of A.

Orthogonal Matrix

An orthogonal matrix is a matrix that is equal to the inverse of its transpose. A square

matrix P is called orthogonal if it is invertible and if 1 TP P  . For example:

The matrix
0 1

1 0
P

 
 
  

is orthogonal because 1 0 1

1 0
TP P

 
  
  

.

An n n matrix P is orthogonal if and only if its column vectors form and orthonormal
set.

Orthogonal Diagonalization of a Symmetric Matrix

Let A be an n n symmetric matrix:

1. Find all eigenvalues of A and determine the multiplicity of each
2. For each eigenvalue of multiplicity 1, choose a unit eigenvector. (Choose any

eigenvector and normalize it). The word multiplicity is a general term meaning
"the number of values for which a given condition holds." For example, the term



is used to refer to the value of the totient valence function or the number of times
a given polynomial equation has a root at a given point.

3. For each eigenvalue of multiplicity 2k  , find a set of k linearly independent
eigenvectors. If this set is not orthonormal apply the Gram-Schmidt
orthonormalization process.

4. The composite of steps 2 and 3 produces an orthonormal set of n eigenvectors.
Use these eigenvectors to form the columns of P. The matrix

1 TP AP P AP D   will be diagonal. (The main diagonal entries of D are the
eigenvalues of A)

Example: Find an orthogonal matrix P that orthogonally diagonalizes the following
matrix:

2 2

2 1
A

 
 
  

The characteristic polynomial of A is:

  
2 2

3 2
2 1

I A


  


 
    

 

Which gives the eigenvalues of 1 3  and 2 2  .

For each eigenvalue, find an eigenvector by converting the matrix I A  to reduced row
echelon form.

1

1 2 1 2 2
3

2 4 0 0 1
I A

       
          
            

x

2

1
4 2 11

2 2
2 1 2

0 0

I A

 
     
         
          

x

The eigenvectors (-2, 1) and (1, 2) form an orthogonal basis for 2R . Each of these
eigenvectors is normalized to produce and orthonormal basis. The normalized vector of X

is a vector in the same direction but with norm (length) 1. It is denoted X̂ and given by

ˆ X
X =

X
where X is the norm of X , also called the unit vector.

 
1

2,1 1 2 1
( 2,1) ,

( 2,1) 5 5 5

          
p



 
2

1, 2 1 1 2
(1, 2) ,

(1, 2) 5 5 5

      
p

Because each eigenvalue has a multiplicity of 1, construct the matrix P

2 1

5 5

1 2

5 5

P

 
 
 
 
 
 
  

Verify P is correct by computing 1 TP AP P AP  .

2 1 2 1

2 2 3 05 5 5 5

1 2 2 1 1 2 0 2

5 5 5 5

TP AP

   
    

       
       
            

      

Rank of a Matrix

The dimension of the row or column space of a matrix A is called the rank of A and is
denoted by rank(A). The rank is the order of the nonzero determinant of greatest order
that can be selected from the matrix by taking out rows and columns. The concept rank
facilitates the statement of the condition for consistency of simultaneous linear equations:
m linear equations in n unknowns are consistent when, and only when, the rank of the
matrix of the coefficients is equal to the rank of the augmented matrix. For example, in
the system of equations

3 0

2 4 0

x y z

x y z

   

   

The matrix of the coefficients is

1 1 1

2 1 1

And the augmented matrix is

1 1 1 3

2 1 1 4

The rank of both is two, because the determinant
1 1

2 1
is not zero.



The dimension of the null space of A is called the nullity of A and is denoted by
nullity(A).

Let A be an n m matrix:

1. The subspace of mR that is spanned by the row vectors of A is called the row
space of A.

2. The subspace of nR that is spanned by the column vectors of A is called the
column space of A.

3. The set of all x in mR such that A x 0 is called the null space of A.

Example: Find a basis for the null space, row space and column space of the
following matrix. Determine the rank and nullity of the matrix.

1 2 1 5 6

4 4 4 12 8

2 0 6 2 4

3 1 7 2 12

A

  
 
    
 
   
   

We’ll find the nullspace first since that was the first thing asked for. The nullspace is
the solution space of the homogeneous system A x 0 . To do this we’ll need to solve
the following system of equations. To solve this system write the augmented matrix

 A 0 in reduced row-echelon form.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

2 5 6 0

4 4 4 12 8 0

2 0 6 2 4 0

3 7 2 12 0

x x x x x

x x x x x

x x x x x

x x x x x

     

    

    

     

The solutions for this system are as follows:

1 2 3 4 53 2 8 2x t x t s x t x s x s     

The nullspace is as follows:

3 3 0

2 8 2 8

1 0

2 0 2

0 1

t

t s

x t t s

s

s

     
     
      
     
            
     
     
     
          



The basis for the nullspace is:

1 2

3 0

2 8

1 0

0 2

0 1

x x

   
   
   
   
   
   
   
   
   
      

So the nullity is nullity( ) 2A  and the rank is equal to 3.

Rank = n(# of columns) - nullity(A)
= 5 - 2
= 3

The rank provides a check when you find a basis for the row and column space. In this
case each should contain three vectors.

Next, the first, second and fourth columns of U contain leading 1’s so they will form a
basis for the column space of U and this tells us that the first, second and fourth
columns of A will form a basis for the column space of A.

Matrix A in row echelon form is given below:

1 2 1 5 6

0 1 2 2 4

0 0 0 1 2

0 0 0 0 0

U

    
 
 
 
  
 
 

The rows containing the leading 1’s will form a basis for the row space of A:

1 2 3

1 0 0

2 1 0

1 2 0

5 2 1

6 4 2

r r r

     
     
     
     
             
          
                

The first, second and fourth columns of U contain leading 1’s so they will form a basis
for the column space of U. This also suggests that the first, second and fourth columns
of A will form a basis for the column space of A.



1 2 3

1 2 5

4 4 12

2 0 2

3 1 2

c c c

     
     
      
       
          
           

Summary of Equivalent Conditions for Square Matrices - A n n  matrix

1. A is invertible
2. A x b has a unique solution for any 1n matrix b
3. A x 0 has only the trivial solution
4. A is row equivalent to nI

5. 0A 

6. Rank( )A n

7. The n row vectors of A are linearly independent
8. The n column vectors of A are linearly independent

Finding a Basis for a Row Space

Find a basis for the row space:

1 3 1 3

0 1 1 0

3 0 6 1

3 4 2 1

2 0 4 2

A

 
 
 
 
    
  
    

Rewrite A in row-echelon form:

1 3 1 3

0 1 1 0

0 0 0 1

0 0 0 0

0 0 0 0

B

 
 
 
 
   
 
 
 
  

The nonzero row vectors of B form a basis for the row space of A as shown below:

     1 2 31,3,1,3 0,1,1,0 0,0,0,1  w w w

Finding a Basis for a Column Space



Find a basis for the column space of matrix A:

1 3 1 3

0 1 1 0

3 0 6 1

3 4 2 1

2 0 4 2

A

 
 
 
 
    
  
    

Take the transpose of A and rewrite TA in row-echelon form:

1 0 3 3 2 1 0 3 3 2

3 1 0 4 0 0 1 9 5 6

1 1 6 2 4 0 0 1 1 1

3 0 1 1 2 0 0 0 0 0

TA

    
   
    
    
         
       

The following form a basis for the row space of TA :

     1 2 31,0, 3,3,2 0,1,9, 5, 6 0,0,1, 1, 1       w w w

This is equivalent to stating that the following column vectors form a basis for the
column space of A:

1 0 0

0 1 0

3 9 1

3 5 1

2 6 1

     
     
     
     
          
           
                

Finding a Basis for a Subspace

Find a basis for the subspace of 3R spanned by:

      
1 2 3

1,2,5 , 3,0,3 , 5,1,8S  

v v v

Use 1v , 2v , and 3v to form the rows of matrix A. Then write A in row-echelon form.



1 2 5 1 2 5

3 0 3 0 1 3

5 1 8 0 0 0

A B

    
   
    
   
   
   

The nonzero row vectors of B that form a basis for the row space of A are as follows:

   1 21, 2, 5 0,1,3   w w

These nonzero row vectors form a basis for the subspace spanned by  1 2 3S  v , v , v .

Change of Basis

Generally, you are provided with the coordinates of a vector relative to one basis B

and are asked to find the coordinates relative to another basis 'B . If you let B be the

standard basis, then the problem of finding the coordinate matrix relative to the basis 'B ,
becomes one of solving for 1 2, ,..., nc c c .

Coordinate representation relative to a basis

Let  1 2 nB  v , v , ..., v be an ordered basis for a vector space V and let x be a vector in V

such that

1 1 2 2 ... n nc c c  x v + v v

The scalars 1 2, ,..., nc c c are called the coordinates of x relative to the basis B. The

coordinate matrix (or coordinate vector) of x relative to B is the column matrix in
nR whose components are the coordinates of x.

 

1

2

3

B

c

c

c

 
 
 
   
 
 
  

x


Example 1: Find the coordinate matrix of  2,1,3x = in 3R relative to the standard

basis       1,0,0 , 0,1,0 , 0,0,1S  .

Because x can be written as:

 2,1,3 2(1,0,0) 1(0,1,0) 3(0,0,1)   x =



The coordinate matrix of x relative to the standard basis is:

 

2

1

3
S

 
 
 
 
 
 

x

The components of x are the same as its coordinates relative to the standard basis.

Example 2: Find the coordinate matrix relative to a standard basis. The coordinate

matrix of x in 2R relative to the ordered basis       1 2 1,0 , 1, 2B  v , v is

 
3

2B

 
 
  

x

Find the coordinates of x relative to the standard basis       '
1 2 1,0 , 0,1B  u ,u .

Because  
3

2B

 
 
  

x then 1 23 2 3(1,0) 2(1,2) (5, 4)   x = v v and since

(5, 4) 5(1,0) 4(01)  , it follows that the coordinates of x relative to 'B are   '

5

4B

 
 
  

x

Example 3: Find the coordinate matrix of  1, 2, 1x = in 3R relative to the

nonstandard basis         '
1 2 2, 1,0,1 , 0, 1,2 , 2,3, 5B    u ,u u .

Begin by writing x as a linear combination of 1 2u ,u and 3u :

1 1 2 2 3 3c c c x u + u u

1 2 3(1, 2, 1) (1,0,1) (0, 1,2) (2,3, 5)c c c     

Equating corresponding components produces the following system of linear
equations:

1 3

2 3

1 2 3

2 1

3 2

2 5 1

c c

c c

c c c

  

  

  

1

2

3

1 0 2 1

0 1 3 2

1 2 5 1

c

c

c

    
    
         
         



The solution of this system is 1 2 35, 8, 2c c c   so

5(1,0,1) ( 8)(0,1,2) ( 2)(2,3, 5)     x

And the coordinate matrix of x relative to 'B is

  '

5

8

2
B

 
 
  
 
  

x

The Inverse of a Transition Matrix

Inverse is defined as opposite in nature and effect; -- said with reference to any two
operations, which, when both are performed in succession upon any quantity, reproduce
that quantity; as, multiplication is the inverse operation to division. The symbol of an

inverse operation is the symbol of the direct operation with -1 as an index; thus 1sin x

means the arc whose sine is x.

A transition is a change from one form to another or the movement from one place or
state to another.

If P is the transition matrix from a basis 'B to a basis B in nR , then P is invertible and the

transition matrix from B to 'B is given by 1P .

Let  1 2 3, , ,..., nB  v v v v and  '
1 2 3, , ,..., nB  u u u u be two bases for nR . Then the

transition matrix 1P from B to 'B can be found by using Gauss-Jordan elimination on

the 2n n matrix 'B B 
   , as follows:

' 1
nB B I P          

Example:

Gram-Schmidt Process

The Gram-Schmidt Process is the process of forming an orthogonal sequence from a
linearly independent sequence.

Linear Transformations

The Geometry of Linear Transformations in the Plane



Reflection in y-axis Reflection in x-axis Reflections in Line y = x

1 0

0 1
A

 
 
  

1 0

0 1
A

 
 
  

0 1

1 0
A

 
 
  

( , ) ( , )

1 0

0 1

T x y x y

x x

y y

 

      
     
          

( , ) ( , )

1 0

0 1

T x y x y

x x

y y

 

     
     
           

( , ) ( , )

0 1

1 0

T x y y x

x y

y x



     
     
          

Horizontal expansion ( 1)k  or contraction (0 1)k  where k is a positive scalar

0

0 1

k
A

 
 
  

( , ) ( , )

0

0 1

T x y kx y

k x kx

y y



     
     
          

Vertical expansion ( 1)k  or contraction (0 1)k 

1 0

0
A

k

 
 
  

( , ) ( , )

1 0

0

T x y x ky

x x

k y ky



     
     
          

Horizontal Shear Vertical Shear

1 0

0
A

k

 
 
  

1 0

1
A

k

 
 
  

( , ) ( , )

1

0 1

T x y x ky y

k x x ky

y y

 

      
     
          

( , ) ( , )

1 0

1

T x y x y kx

x x

k y kx y

 

     
     
          

Shear is a transformation in which all points along a given line L remain fixed while
other points are shifted parallel to L by a distance proportional to their perpendicular
distance from L. Shearing a plane figure does not change its area. The shear can also be
generalized to three dimensions, in which planes are translated instead of lines.

Rotations in 3-space

Rotation about the x-axis Rotation about the y-axis Rotation about the z-axis



1 0 0

0 cos sin

0 sin cos

 

 

 
 
 
 
 
 

cos 0 sin

0 1 0

sin 0 cos

 

 

 
 
 
 
  

cos sin 0

sin cos 0

0 0 1

 

 

 
 
 
 
 
 

In each case the rotation is oriented counterclockwise relative to a person facing the
negative direction of the indicated axis.

Example: Given the eight vertices of a rectangular box having sides of length 1, 2,
and 3, find the coordinates of the box when it is rotated counterclockwise 60 degrees
about the z-axis.

1 3
0

2 2
cos sin 0

3 1
sin cos 0 0

2 2
0 0 1

0 0 1

 

 

 
  
     
      
  
    
 
  

Original Vertex Rotated Vertex

1

2

3

4

5

6

7

8

(0,0,0)

(1,0,0)

(1,2,0)

(0,2,0)

(0,0,3)

(1,0,3)

(1,2,3)

(0, 2,3)

V

V

V

V

V

V

V

V

















(0,0,0)

(0.5,0.87,0)

( 1.23,1.87,0)

( 1.73,1,0)

(0,0,3)

(0.5,0.87,3)

( 1.23,1.87,3)

( 1.73,1,3)









Groups and Fields

A group is a set G with a binary operation whose domain is the set of all ordered pairs
of members of G, whose range is contained in G, and which satisfies the following
conditions:

1. There is a member of G (called the identity or unit element) such that its product
with any member, in either order, is that same member

2. For each member of G there is a member (called the inverse) such that the product
of the two, in either order, is the identity

3. The associative law holds ( ) ( )a b c a b c  



The positive and negative integers and zero form a group under ordinary addition, the
identity being zero and the inverse of an integer its negative. A group is Abelian (or
commutative) if (in addition to the three assumption listed above it satisfies the
commutative law. A group for which all members are powers of one member is cyclic.
The number of members of a finite group is the order of the group.

A field is a set for which two operations call addition and multiplication are defined
and have the following properties:

1. The set F is a commutative group with addition as the group operation
2. Multiplication is commutative and the set, with the identity zero of the additive

group omitted is a group with multiplication as the group operation
3. The distributive law holds ( )a b c ab ac   for all a, b, and c in the set

4. Each nonzero element, a in F has an inverse element 1a in F relative to
operation of multiplication.

Hermitian (Hermitian conjugate of a matrix) – The transpose of the complex
conjugate of the matrix; called the adjoint of the matrix by some writers on quantum
mechanics.

Linear Programming

Linear programming is the mathematical theory of the minimization or maximization of
a linear function subject to linear constraints. A solution of a linear programming
problem is any set of values ix that satisfy the m linear constraints. A solution consisting

of nonnegative numbers is a feasible solution. A solution consisting of m x’s for which
the matrix of coefficients in the constraints is not singular, and otherwise consisting of
zeros, is a basic solution. A feasible solution that minimizes the linear form is an
optimal solution.

A two-dimensional linear programming problem consists of a linear objective function
and a system of linear inequalities called constraints. The objective function gives the
quantity that is to be maximized (or minimized), and the constraints determine the set of
feasible solutions.

If a linear programming problem has an optimal solution, it must occur at a vertex of the
set of feasible solutions. If the problem has more than one optimal solution, then at least
one of them must occur at a vertex of the set of feasible solutions. In either case, the
value of the objective function is unique.

To solve a linear programming problem involving two variables by the graphical method,
use the following steps.

1. Sketch the region corresponding to the system of constraints. (The points inside or
on the boundary of the region are called feasible solutions.)

2. Find the vertices of the region.



3. Test the objective function at each of the vertices and select the values of the
variables that optimize the objective function. For a bounded region, both a
minimum and maximum value will exist. (For an unbounded region, if an optimal
solution exists, it will occur at a vertex.)

Example: Find the maximum values of:

3 2z x y  Objective function

Subject to the following constraints:

0

0

2 4

1

x

y

x y

x y





 

 

Constraints

Set the equations equal to the constant and graph. The constraints form an area or region.
At the vertices of this region the values of the objective function are as follows:

At (0, 0) z = 3(0) + 2(0) = 0
At (1, 0) z = 3(1) + 2(0) = 3
At (2, 1) z = 3(2) + 2(1) = 8
At (0, 2) z = 3(0) + 2(2) = 4

The maximum value occurs at z = 8 when x = 2 and y = 1.

When solving a linear programming problem, it is possible that the maximum (or
minimum) value occurs at two different vertices. Some linear programming problems
have no optimal solution. This can occur if the region determined by the constraints is
unbounded.

Simplex Method

The simplex method is carried out by performing elementary row operations on a matrix
called the simplex tableau. This tableau consists of the augmented matrix corresponding
to the constraint equations together with the coefficients of the objective function written
in the form:

1 1 2 2 1 2... (0) (0) ... (0) 0n n mc x c x c x s s s z         

Because the left-hand side of each inequality is less than or equal to the right-hand side,
there must exist nonnegative numbers 1 2, ,..., ns s s that can be added to the left side of

each equation to produce the system of linear equations. The numbers 1 2, ,..., ns s s are

called slack variables because they represent the “slack” in each inequality. Occasionally,



the constraints in a linear programming problem will include an equation. In such cases,
you can still add a “slack variable” called an artificial variable to form the initial simplex
tableau. Technically, this new variable is not a slack variable (because there is no slack to
be taken). Once you have determined an optimal solution in such a problem, you should
check to see that any equations in the original constraints are satisfied.

Once you have set up the initial simplex tableau for a linear programming problem, the
simplex method consists of checking for optimality and then, if the current solution is not
optimal, improving the current solution. (An improved solution is one that has a larger -
value than the current solution.) To improve the current solution, bring a new basic
variable into the solution, the entering variable. This implies that one of the current basic
variables (the departing variable) must leave, otherwise you would have too many
variables for a basic solution. You choose the entering and departing variables as follows.

1. The entering variable corresponds to the smallest (the most negative) entry in the
bottom row of the tableau.

2. The departing variable corresponds to the smallest nonnegative ratio of in the
column determined by the entering variable.

3. The entry in the simplex tableau in the entering variable’s column and the
departing variable’s row is called the pivot.

Finally, to form the improved solution, apply Gauss-Jordan elimination to the column
that contains the pivot.

A basic solution of a linear programming problem in standard form is a solution

 1 2 1 2, ,..., , , ,...n mx x x s s s of the constraint equations in which at most m variables are

nonzero, and the variables that are nonzero are called basic variables. A basic solution for
which all variables are nonnegative is called a basic feasible solution.

Algorithm for the Simplex Method

1. Determine the objective function
2. Determine the constraints
3. Convert each inequality in the set of constraints to an equation by adding slack

variables.
4. Create the initial simplex tableau.
5. Locate the most negative entry in the bottom row. The column for this entry is

called the entering column. (If ties occur, any of the tied entries can be used to
determine the entering column.)

6. Form the ratios of the entries in the “b-column” with their corresponding positive
entries in the entering column. The departing row corresponds to the smallest

nonnegative ratio i

ij

b

a
. (If all entries in the entering column are 0 or negative, then

there is no maximum solution. For ties, choose either entry.) The entry in the
departing row and the entering column is called the pivot.



7. Use elementary row operations so that the pivot is 1, and all other entries in the
entering column are 0. This process is called pivoting.

8. If all entries in the bottom row are zero or positive, this is the final tableau. If not,
go back to step 3.

9. If you obtain a final tableau, then the linear programming problem has a
maximum solution, which is given by the entry in the lower right corner of the
tableau.

Example: Use the simplex method to find the maximum value of the objective function:

1 2 32 2z x x x  

Constraints:

1 2

1 2 3

2 3

2 10

2 2 20

2 5

x x

x x x

x x

 

  

  

Where 1 2 30, 0, 0x x x     and the basic feasible solution is

   1 2 3 1 2 3, , , , , 0,0,0,10,20,5x x x s s s 

Add slack values and create the initial simplex tableau:

1 2 3 1 2 3

1

2

3

2 1 0 1 0 0 10

1 2 2 0 1 0 20

0 1 2 0 0 1 5

2 1 2 0 0 0 0

x x x s s s b

s

s

s



 

Locate the most negative entry in the bottom row and find the smallest nonnegative

ratio i

ij

b

a
.

10 20 5 1
, 10 2

0 2 2 2
ND  



The first ratio is division by zero so it is not defined, the second ratio is negative, and the
third ration is the smallest nonnegative value so 2 will be the pivot, shown in bold below.



1 2 3 1 2 3

1

2

3

2 1 0 1 0 0 10

1 2 2 0 1 0 20

0 1 0 0 1 5

2 1 2 0 0 0 0

x x x s s s b

s

s

x



 

2

Use Gauss-Jordan elimination so that the pivot is 1, and all other entries in the entering
column are 0. This process is called pivoting. Notice that the basic variables change as a
result of the pivot process.

Use the following row operations:

R3 + R2
1

3
2

R

1 2 3 1 2 3

1

2

3

2 1 0 1 0 0 10

1 3 0 0 1 1 25

1 1 5
0 1 0 0

2 2 2

2 2 0 0 0 1 5

x x x s s s b

s

s

x



Since there is still a negative value in the bottom row of the tableau you need to repeat
the pivot process.

10 25 5
5, 25 / 0

2 1 2
ND  

1 2 3 1 2 3

1

2

3

1 1
1 0 0 0 5

2 2

5 1
0 0 1 1 20

2 2

1 1 5
0 1 0 0

2 2 2

0 3 0 1 0 1 15

x x x s s s b

x

s

x



This implies that the optimal solution is  1 2 3 1 2 3

5
, , , , , 5,0, ,0,20,0

2
x x x s s s

    
and the

maximum value of z is 15.



1 2 32 2

5
2(5) 0 2

2

10 5

15

z x x x

z

z

z

  

      

 




